Oxidants increase paracellular permeability in a cultured epithelial cell line.
نویسندگان
چکیده
Inflammation of epithelia is an important step in the pathophysiology of a wide variety of diseases. Because reactive oxygen metabolites are important effector molecules of acute inflammation, we examined the effect of oxidants on the barrier function of a cultured epithelium, Madin Darby Canine Kidney cells, by measuring the transepithelial electrical conductance, Gt, of monolayers grown on permeable supports. We found that H2O2, added directly or generated with glucose oxidase, increased Gt. Similar effects were observed with addition of xanthine and xanthine oxidase, a system which enzymatically generates superoxide radical O2-. The oxidant-induced increase in Gt was reversible if the exposure to oxidants was not prolonged (less than 20 min), and if the concentration of H2O2 was less than 5 X 10(-3) M. The increase in Gt suggested that oxidants increase the permeability of the paracellular pathway, a suggestion supported by an oxidant-induced increase in the permeability to 14C-mannitol, which primarily crosses epithelia via the extracellular route. In addition to functional changes in the epithelial monolayer, oxidants changed the cell morphology; after H2O2 exposure, the cells tended to pull apart, most prominently at their basolateral surfaces. These changes were heterogeneous with most areas showing no changes. Some of the morphologic changes could be reversed if the exposure to H2O2 was limited. We also observed a disruption of the normal pattern of the actin-cytoskeleton, particularly in the area of cell to cell junctions, as demonstrated by fluorescent staining of f-actin with rhodamine phallicidin. These functional and structural findings indicate that oxidants increase the permeability of the paracellular pathway in a cultured epithelium. The changes can be reversible, and are accompanied by alterations in organization of the cell cytoskeleton. These studies demonstrate the dynamic nature of the interaction between epithelial cells and oxygen metabolites.
منابع مشابه
Asbestos-induced lung epithelial permeability: potential role of nonoxidant pathways.
Asbestos fibers are an important cause of lung fibrosis; however, the biological mechanisms are incompletely understood. The lung epithelium serves an important barrier function in the lung, and disrupting the epithelial barrier can contribute to lung fibrosis. Lung epithelial permeability is increased in patients with asbestosis, and asbestos fibers increase permeability across cultured human ...
متن کاملHistamine alters E-cadherin cell adhesion to increase human airway epithelial permeability.
During the immediate response to an inhaled allergen, there is an increase in the paracellular permeability of the airway epithelium.1 Histamine is an important agonist released during the immediate response to inhaled allergen. We hypothesized that histamine would increase human airway epithelial paracellular permeability and that it would do this by interrupting E-cadherin-based cell adhesion...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملStretch increases alveolar epithelial permeability to uncharged micromolecules.
We measured stretch-induced changes in transepithelial permeability in vitro to uncharged tracers 1.5-5.5 A in radius to identify a critical stretch threshold associated with failure of the alveolar epithelial transport barrier. Cultured alveolar epithelial cells were subjected to a uniform cyclic (0.25 Hz) biaxial 12, 25, or 37% change in surface area (DeltaSA) for 1 h. Additional cells served...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 76 3 شماره
صفحات -
تاریخ انتشار 1985